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AGNOSTIC TESTS OF GRAVITY

TESSA BAKER 9= FULBRIGHT

Oxford Uni. & U.Penn s DY COMMISSION




OUTLINE

1. A map of alternative gravity.

2. A new, agnostic framework for testing gravity.

3. Constraints, current and future.
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1. A GUIDE TO ALTERNATIVE GRAVITY.



LOVELOCK'S THEOREM (1971)

“The only second-order, local gravitational field equations derivable
from an action containing solely the 4D metric tensor (plus related
tensors) are the Einstein field equations with a cosmological constant.”

2
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Five options:
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“The only second-order, local gravitational field equations derivable
from an action containing solely the 4D metric tensor (plus related
tensors) are the Einstein field equations with a cosmological constant.”
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Five options:
1. Add new field content.
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2. Higher dimensions.



LOVELOCK'S THEOREM (1971)

“The only second-order, local gravitational field equations derivable
from an action containing solely the 4D metric tensor (plus related
tensors) are the Einstein field equations with a cosmological constant.”

M2
Sgrav — TP%/\/—Q d4213[R—|— 51R\/M\/“R + 52V,UJR57V“R5’Y}

Five options:
1. Add new field content.

2. Higher dimensions.
3.> 2nd order derivatives in the field equations.



LOVELOCK'S THEOREM (1971)

“The only second-order, local gravitational field equations derivable
from an action containing solely the 4D metric tensor (plus related
tensors) are the Einstein field equations with a cosmological constant.”
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Five options:
1. Add new field content.

2. Higher dimensions.
3.> 2nd order derivatives in the field equations.

4. Non-locality.



LOVELOCK'S THEOREM (1971)

“The only second-order, local gravitational field equations derivable
from an action containing solely the 4D metric tensor (plus related
tensors) are the Einstein field equations with a cosmological constant.”

m
Five options:

1. Add new field content.

2. Higher dimensions.
3.> 2nd order derivatives in the field equations.

4. Non-locality.
5. Radically change our action principle (emergence).
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2. PARAMETERISED IfRA'i\dEWURKS
FOR GRAVITY.



AGNOSTIC PARAMETERISATIONS

» Different theories = different specifications of the framework’s
parameters.

Theory
space

Parameterisation
space

» Test a model-independent framework, a la PPN
(Parameterised Post-Newtonian...).

» Downside: the framework “parameters’ are really functions of
time...and sometimes scale, too.



Specify the field content and symmetries.

Construct most general quadratic action from allowed
building blocks.

Apply gauge symmetries = fixes relationships between
new terms.

Maximal set of parameters’ to be constrained.




Specify the field content and symmetries.

Do we want to add new scalar, vector or tensor fields to gravity?

E.g. Horndeski bigravity

Einstein-Aether

Isotropic + homogeneous cosmological background.
= a(t), Ht)

Linear diffeomorphism invariance.

i.e. GR's lack of a preferred coordinate system.



Specify the field content and symmetries.

Construct most general quadratic action from allowed

building blocks.




Construct most general quadratic action from allowed

building blocks.

Use a ‘3+1 split’ or '"ADM decomposition’.

= splits spacetime into a timelike normal + spacelike surfaces.

Guv = NNy + Ay

timelike 3D spatial
normal slices

Image: Yi Wang.



Construct most general quadratic action from allowed

building blocks.

The ADM formalism hands us a set of objects that make up
the 4D metric.

= Building blocks:

N, N°. hij, K;, R;- describe the metric
_|_
¢ or V or qu new fields (not present in GR)
_|_

n, P, usual fluid matter sector



Construct most general quadratic action from allowed

building blocks.

Put these building blocks into a vector (just convenient):

© = (N, N, hyj, Ki, R:, ¢,...)

Taylor expand the gravitational Lagrangian:

_ 1
L~L + Leg, 00, + 5 L@a@bé@ad@b + ...

OLo,
90,




_ 1
L~L + Lg, 00, + §L@a@b5@a5@b + ...

Construct most general quadratic action from allowed

building blocks.

5,5 — / At d®c NV=h | Lon(t) Shi6RI + Ly (t) 5NOK
+ Ly oni(t) 6hy; O'ON? + Lonon (1) 06N 8;6N + ...

+ Lopap(t) 0°6¢ 0,00 + Lyr(t) 6¢dR +

-+ usual fluid matter sector



Specify the field content and symmetries.

Construct most general quadratic action from allowed
building blocks.

Apply gauge symmetries = fixes relationships between
new terms.




Apply gauge symmetries = fixes relationships between

new terms.
Apply gauge transformation (linear diffeomrophism):
rt — xF 4 €

el = (77, c?ie)

Perturbed building blocks 6N, 8N', 6h;; etc. transform in known
way.

E.g. N? — §N* — 26N7



Apply gauge symmetries = fixes relationships between

new terms.

Apply gauge transformation (linear diffeomrophism):
rt — xF 4 €

el = (77, c?ie)

Perturbed building blocks 6N, 8N', 6h;; etc. transform in known
way.

terms linear in

= 025 — 095 + [ SN, 5N, 5h; etc'} X (m or €)



z# — ot + (7, 0')

Apply gauge symmetries = fixes relationships between

new terms.

i.e. the following must vanish:

[(...)5N+ (...) 96N+ (---) 0" (6h;j) + ("')&b}”
+
[(...)5N+ (--) &N + (---) 007 (6hy;) + (-~)5¢} ¢

Combinations of Taylor coefficients, Lir(t), Lon(t) etc.
PLUS cosmological background: a(t), H(t).



_ 1
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Construct most general quadratic action from allowed

building blocks.

5,5 — / At d®c NV=h | Lon(t) Shi6RI + Ly (t) 5NOK
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+ Lopap(t) 0°6¢ 0,00 + Lyr(t) 6¢dR +

-+ usual fluid matter sector



z# — ot + (7, 0')

Apply gauge symmetries = fixes relationships between

new terms.

i.e. the following must vanish:

[(...)5N+ (...) 96N+ (---) 0" (6h;j) + ("')&b}”
+
[(...)5N+ (--) &N + (---) 007 (6hy;) + (-~)5¢} ¢

Combinations of Taylor coefficients, Lir(t), Lon(t) etc.
PLUS cosmological background: a(t), H(t).



 — ot + (m, 0')

Apply gauge symmetries = fixes relationships between

new terms.

Nondynamical symmetry = all ( Ce ) must vanish, always.

Result: a set of Noether constraints linking Lig(t), Lon(t) etc.

E.g. L +3HLon —5H?Lyg =0

Tedious-but-easy exercise in elimination of variables.

= Ly = ... othercoeffs LNN =

Lyr = ... other coeffs Ligzy = 0



_ 1
L~L + Lg, 00, + §L@a@b5@a5@b + ...

Construct most general quadratic action from allowed

building blocks.

5,5 — / At d®c NV=h | Lon(t) Shi6RI + Ly (t) 5NOK
+ Ly oni(t) 6hy; O'ON? + Lonon (1) 06N 8;6N + ...

+ Lopap(t) 0°6¢ 0,00 + Lyr(t) 6¢dR +

-+ usual fluid matter sector



Specify the field content and symmetries.

Construct most general quadratic action from allowed
building blocks.

Apply gauge symmetries = fixes relationships between
new terms.

Maximal set of parameters’ to be constrained.




Maximal set of parameters’ to be constrained.

Rewrite original action in terms of terms of non-redundant coeffs.

Scalar field case:
Initial ~ 40 unknown coeffs collapse to just 4 non-redundant ones.

M{(t)°

525 — /dBZE dt (13 R(4D) + QT (t) 52 (\/ER/CL:g)

+ ag(t)H*6N* 4+ 4ap(t)HIKSN




STEP 4

0% (t) . speed of gravitational waves, CZT =1+ ap .

QK (t) . kinetic term of scalar field.

B (t) . braiding’ — mixing of scalar + metric kinetic terms.

1 dln M*=(t) | |
ap(t) = : running of effective Planck mass.

H dt

QL (t) :  Optional: disformal transformations.

g,uy — QQQ,UJ/ =+ Fa,u¢av¢




. INTERFACE WITH OBSERVATIONS




WHY SHOULD YOU CARE?

» Maximal, model-independent description of modified gravity.

= Your results are protected from changing theory fashions.

» This is the most general parameterisation available.

Fields Functions Theory family

previous

works




Planck CMB data + galaxy surveys:
BOSS, VIPERS, WiggleZ.

Bellini et al., 2015.

-0.073 0.55 2 1.8 063 -0.28 0.073 043 -0.9 -05 -0.28 0.029
OéBo QMO OéTo



Gleyzes et al., 2015.

Example forecast for a Euclid-like survey:

Galaxy Clustering

Weak Lensing

ISW-Galaxy
GC+ISW-Gal+WL

Potentially DES 3-year data?



FREEBIES Lagos, TB, Ferreira & Noller (2016).

» We have code!
xIST — Mathematica routines for linear Scalar Tensor theories.

CoPPer — Cosmological Parameterised Perturbations.

Available from https://github.com/noller/xIST .

Outputs parametrised field equations for LSS + lensing calculations.

A

» In progress: interface with Einstein-Boltzmann solvers,
MCMC, etc.



https://github.com/noller/xIST
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Hopefully make progress with this...




CONCLUSIONS

» Lovelock’s theorem and the gravity theory landscape.

» A mathematically rigorous, agnostic parameterisations for
testing gravity.

» The current constraint status of these frameworks, and hints
of what's to come.

 tessa.baker@physics.ox.ac.uk
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Kretschmann scalar:

K = RagwsRo‘mé

TB, Psaltis & Skordis (2015).
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